グローバルなメルカリの検索バックエンド設計と検索基盤拡充

こんにちは。検索領域でエンジニアをやっております、shinpeiです。

本記事は連載企画:メルカリ初の世界共通アプリ「メルカリ グローバルアプリ」の開発舞台裏の一環として、メルカリグローバルアプリの検索バックエンドをスクラッチで開発することに伴い、大事にした設計のポイントをご紹介します。また今回の新たな要求を契機に既存の検索基盤の拡充が必要だったのでそれについても書かせていただきました。

グローバルアプリでの検索の要件と課題

先日、弊社からの発表の通り、メルカリはグローバルアプリの提供を開始しました。これに合わせて、検索もグローバルな検索を作るべく準備をすすめてきました。グローバル展開にむけたアプリと基盤の再構築で紹介したようにグローバルアプリを提供するにあたりバックエンド基盤の再構築を行っています。基盤を活かしながら必要な部分は新しく作り直すアプローチをとっており、検索バックエンドもそれに合わせて再設計を行いました。最低要件は、3年で50カ国展開。出品数は累計40億です(2025年9月時点)。日本事業(日本のお客さま向けメルカリアプリ)の検索との違いは複数ありますが、主なものは以下です。

  • 複数国展開をするための多言語対応
  • 検索対象として、アイテムモデルとプロダクトモデルとの両立
  • 越境事業においてフォーカスしていく際のエンタメホビー領域に特化できるような独自の検索結果チューニング

1.は日本語以外を扱うための要件です。世界展開となれば、言語の壁は避けては通れない課題です。全文検索はそれぞれの言語自体を処理する必要があります。中国語のクエリ、英語のクエリ、フランス語のクエリ。これらを商品情報とマッチさせる必要があります。現在は日本で出品された日本語の商品をメインに扱っていますが、長期的には日本語以外の商品を扱う可能性も考慮する必要がありました。

2.は検索エンジンで検索対象として扱うデータモデルの話です。アイテムとは、現在のメルカリの主流である、単一の商品が検索対象となるようなデータモデルです。一方、プロダクトモデルとは、一つの検索対象だけど、例えば色違い(バリアント)が複数存在させることができるようなデータモデルです。C2Cの商品はアイテムモデルで対応できるのですが、B2Cの商品の一部はバリアントを持つため、プロダクトモデルが必要になります。メルカリはC2Cマーケットプレイスとしてスタートしたため、日本事業の検索では今もなお、アイテムモデルで動いていますが、グローバルアプリではアイテム、プロダクト双方を同等に扱える必要があります。

3.はグローバルアプリは検索結果を独立してコントロールしたいという意味です。グローバル展開を考えたときに国ごとのチューニングや事業の方向性に合わせた柔軟性が必要になります。例えば、クエリを自分たちで組み立てて、自由に検索結果をチューニングもできるように作る必要があります 。検索は日本事業と越境事業両方で重要な機能であり、開発の優先度やリソースなどい違いに影響を受けないようにすることも重要です。

Vertex AI Search for Commerce の採用

日本事業の検索ではElasticsearchを使っています。グローバルアプリでは日本にある商品全体を扱う予定だったので、売上に比べてデータ量が桁違いに大きい状態です。売上とコストを両立させるにはElasticsearchの再利用くらいしか思いつきませんでしたが、多言語対応や独立性の確保、リリースまでの時間と開発リソースを考えると、どうしてもその前の交通整理に長い時間がかかります。どうやるか思案していた時に、思いがけず案に上がってきたのがGoogleが提供してるVertex AI Search for Commerce(以下、VAIS:C)です。今回の例では以下の点で魅力的でした。

  • フルマネージドな小売サイト向け検索サービス
  • リクエストベースの課金モデル(トラフィックがなければ課金されない)
  • 多言語対応あり
  • 入力するデータはプロダクトモデル(バリアントあり)
  • ある程度の検索結果チューニングが可能
  • ユーザーイベントベースの検索結果最適化あり
  • グローバルエンドポイント(世界中から使える)

これだ!と思いました。要件とVAIS:Cができることを見比べていただければわかりますが、グローバルアプリにとって必要な要求をほぼ満たしており、ネックなのはコストだけです。そこで我々が立てた戦略は以下です。

  • VAIS:Cを導入し、素早くスモールスタートする
  • トラフィックが伸びてきて、ペイできないレベルになれば、Elasticsearchに切り替える

この方法であれば、Elasticsearch側をグローバルアプリに適用するために必要な準備期間も稼げると思いました。一方で、ビジネス側の懸念は現在の日本事業の検索と、同様の売り上げを得る検索結果をだすことができるかどうか、でした。そこはやってみなければわからなかったので、A/Bテストを行うことになりました。

簡単にVAIS:Cを説明しますと、商品情報と、ユーザーイベントを入れると、最適な検索結果が返ってくるというものです。最適化に必要となるユーザーイベントは、Google Analytics 4(以下、GA4)で収集したものが前提となってましたが、スキーマさえ合わせれば独自イベントの入力も可能でした。メルカリはGA4ではなく、独自のイベント基盤を持っているため、なんとか変換して動かしました。(Google Cloud Japanの皆様には多大なるご協力をいただきまして、大変お世話になりました。)

結果的には、我々の商品情報と、なんとか変換したユーザーイベントでは、日本事業の検索よりも結果が劣ることを確認できました。また、後述するいくつかの要件を満たすことが難しいこともわかりました。ですが、このリスクを補ってあまるメリットがあるのも事実です。(これを全部、私一人でできてるのですから!)検索エンジンが変わることでのリスクは合意した上で、グローバルアプリの初期リリースはVAIS:Cで行う、と決めました。

新しい検索バックエンドの設計

検索エンジンの目処が立ったので、次はバックエンドの話です。ここでは、特にこだわった点をご紹介します。
私は7年前、現在の日本事業の検索システムの設計にも関わっていました。当時は理想や期待を込めて設計しましたが、実際に運用を続ける中で「これは設計から見直した方がいい」と感じる部分も多く、今回はそれらを改善する形にしています。

  • データモデルに依存したAPI

    データを取得するタイプのインターフェースは”どんなデータ”を対象とするかでガラッと設計が変わります。汎用的になものを作ろうとすると、抽象化が進みすぎて、余計わかりにくくなってしまいがちです。対象が無限に増えるわけではないので、汎用化はせずに、たとえばProductをSearchするためのエンドポイント、というふうに割り切りました。Productのデータモデルは決まっています。タイトルがあって、商品の説明があって、値段があって、、、と、どこに行っても同じです。

  • 柔軟な処理を可能にするプラグイン機構
    ElasticsearchやSolrなどにもあるように、検索クエリや結果に対して独自の処理を加えたいというニーズはどの検索システムにもあります。日本事業の検索開発でも、これまで多くの条件分岐(if文)がコードに埋め込まれ、整理が難しくなっていました。そこで、今回のグローバルアプリ向け検索バックエンドでは、クエリの前処理・後処理をフックできるプラグイン機構を導入しています。検索機能の開発者は、必要な処理をプラグインとして追加するだけで拡張が可能です。多くのソフトウェアでも似たような仕組みが使われていますが、結局この方法に行き着くよな、という実感があります。

  • 検索エンジン機能の実装と抽象をわける
    基本的なロジックは抽象層にまとめ、実装部分は切り替え可能な構成にしています。もともと、VAIS:CとElasticsearchの両方で動く必要がありましたが、この要件がなくても同じ設計にしたと思います。というのも、検索エンジンの世界はまさに“戦国時代”で、Vector検索に強い新しいエンジンなど、次々と登場しています。現在はElasticsearchを使っていますが、将来的に他の選択肢が有力になる可能性もあります。このため、抽象化しておくことで、後々の移行や比較コストを大きく減らせると考えてます。

  • その他
    グローバルアプリでは、もともとバックエンド全体に関する設計方針が明確にあります (グローバル展開を支える基盤の裏側を参照)。このおかげで、何がどこにあるかが、ある程度明確になってます。特に大事だと思うのは、BFFの切り分けです。BFFはここにあるよ(逆にいうと、ここにしかないよ)というのは、見る箇所が限定できるので探索のコストが減るのです。これまでのマイクロサービスでは、どこの誰が検索APIを叩いて、それをお客さまに出しているかをこちらから把握するのは困難でした。検索バックエンドでも、ドメイン特化のノウハウがあります。何をどこに実装するかを明確に提示してるのは新しい検索バックエンドの特徴です。バックエンド全体の設計でも、期せずして同じようなことをしているのは、これまでの苦痛が似ているからだと思います。だれでもなんでもどこにでも作れるというのは、メンテナンスコストを上げる結果になっているという経験則だと思います。

プロダクトオーナーからの想定外の要求で冷や汗

最初はVAIS:Cを使うとはいえ、長期的にはElasticsearchに切り替えなければなりません。私はこれまで、Elasticsearch as a Service (以下、EaaS) という、ECKなどをベースに作った社内のElasticsearchホスト基盤を開発&運用してきました。チームの活躍で、グループ内のほぼすべての検索サービスはEaaSの上で動いてると言えるところまで来ています。関連するエコシステムも充実させてきました。カスタマイズ性も高く、実際、メルカリの複数のビジネスで使われていることがその証左です。グローバルアプリの準備期間中、責任者である@Suwenさんと直接話す機会が多く、EaaSはなんでもできるので安心してください、と伝えてました。そこで何度もフィードバックされたのが、以下のような点です。

「日本事業のこの検索機能、グローバルアプリでも使いたいな」「日本事業のこの機能、グローバルアプリだったらこういうふうにカスタマイズしたらいいよね」

さぁ、ここで私の過去の記事を読んでいただけたみなさまなら、私が冷や汗を流した理由がおわかりですね?EaaSは、Elasticsearchの提供が主であり、その上に作られた機能の再利用までは責任を持っていません。もちろん、プラットフォームとして、機能の再利用性を無視していたわけじゃありません。Elasticsearchにはプラグイン機構があり、実際にそのプラグインを用いた機能なら再利用できます。しかしメルカリではJavaエンジニアは少数派で、Elasticsearchプラグインの開発はほぼ進みませんでした。機能のほぼ全てはGoのマイクロサービスに作り込まれています。以下に、課題感を説明するのに使ったスライドの一部を晒します。日本事業の作り込んだ検索機能資産が使いたいけど、使えないという状態です。

実はこの問題は以前にもぶつかってました。広告事業からも、EaaSを使ってもらっていたのですが、ビジネス側からの期待値は、EaaSを使えば、日本事業の検索と同じクオリティの検索結果がでてくると思われていたのです。実際には、EaaSは日本事業の検索と同じ検索結果を提供するわけではないので、この時は日本向けに作られたシノニムや日本語形態素解析などのライブラリを広告チームのバックエンドから再利用してもらう形で落ち着きました。この頃にスライドを書き、日本の検索チームへ、Goで作られた検索機能の再利用性を高めるべきだとの問題提起はしてきました。が、当時の日本事業の優先度的には、再利用性にリソースを割いてもらうことはなかなか難しかったのです。

All for oneで検索基盤の拡充へ

私はここからは迷走しました。日本事業の開発や優先度を邪魔しない範囲で、なんとか機能の再利用化を進める案を捻り出そうとしました。一時は、必要な機能をElasticsearchプラグインで書き直すか、とまで考えていました。ここで肝となった問題点を整理します。

  • EaaSは最初から複数事業での利用を見据えた設計であるが、その上に作った日本事業の検索サービスは日本事業に強く結合しているため、他事業からの再利用が困難である
  • 日本事業の検索は7年運用してきたコードベースであり、前述のとおり、うまく整理されていないなどの負債がある
  • 日本事業の検索は引き続き重要であり、このコードベース自体を再利用できるように改変しつつ、日本事業向けの開発を同時並行するのは困難

グローバルアプリの技術責任者である@deeeeetとも議論を重ねて、以下のような案を出しました。いまあるEaaSの上に、再利用可能な機能を一個ずつ切り出して使用するというものです。

日本事業側にも問題と案を再掲示し、議論を重ねました。最終的に、グローバルアプリの優先度が上がったこともあり、日本事業側からも積極的に動いてくれて、日本事業の検索機能を再利用するための新しい層を作ることが決まりました。この層に関しては、主導権があるわけではないので、私からはEaaSというプラットフォームが大事にしているところをなるべく共有して、いまのところ共通した方針のもと一緒に作っています。具体的には以下です。

  • Platformがその下で使われてるオープンソースソフトウェアに必要以上の制約を加えないこと
    ここでいうオープンソースソフトウェアとは、我々の場合はElasticsearchです。Elasticsearchには我々がただ使ってないだけで、まだまだたくさんの可能性があります。これを現時点では使わないからという理由で上のプラットフォームを経由すると使えなくなるのは本末転倒だと思ってます。実はここは議論になりやすい点で、制約を加えた方が不可測事態が避けられて、メンテが楽になるという話もありますので、慎重な説得と周りの理解が必要です。

  • 各ビジネスドメインから独立して使えること
    共通基盤を作って、それを複数のオーナーから利用する時に問題になるのは機能の開発優先度だと思います。事業Aは規模が小さいから後回し。事業Bのオーナーは発言力があるから、優先。。などなど、いわゆる”政治”になりやすいところだと思います。完全な独立は不可能ですが、これをなるべく避けるためには、基盤への開発が開かれていることが重要です。開かれていると言っても、自由に作れるとはまた違います。ブログの前段で説明した通り、どこでもだれでもいじれると収拾がつかなくなってしまいます。それを解決する一つの手はプラグイン機構です。どこをどうフックするかはまだまだ議論していく必要があるのですが、基本的な方針に関しては同意できています。

こうして、現在のグローバルアプリの検索は、VAIS:CとEaaSの上に作られた新しい仕組みとのハイブリッドで稼働しています。

まとめ

今回はグローバルアプリでの新たな検索要求に対してどのような方針で対処したのかについて書かせていただきました。従来の日本事業の検索とは毛色の違う要求をこなすために、フルマネージドの検索サービスである、VAIS:Cを一時的に導入しました。また、グローバルアプリの開発要求を起点に議論が広がり、社内検索基盤を拡充させることで、今後の要求についても対処できるように基盤を作っていることについても触れさせていただきました。具体的な多言語対応方法など、今回、書ききれなかった部分もあるので、また次回以降でご紹介できればいいなと思ってます。

参考

  • X
  • Facebook
  • linkedin
  • このエントリーをはてなブックマークに追加